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A system whose state is descrii by a scalar parameter is considered. The parameter undergoes &c&on 
from the initial to a critical value. As soon as the latter is attained, the system is instantaneously brought back 
into the standard state an the relaxation process begins again. Because relaxation can be described hy an 
equation with delay, each relaxation cycle that follows is different from the pxevi~~ ones, in general. Some 
properties of the mathematical model under consideration are eatabIished. In particular, conditions are given, 
under which the long-term behaviour of the system times Upton periodic. 

We will consider a process in a system with after-effect described by a functional-differential delay equation 
(DDE) with relaxation and imp&e support” The latter means that there is a ‘“tension functional”” determined 
by the state of the system {and, in general, its history) and which changes only up to a certain critical value. 
As soon as this value is attained, the state is altered rapid& and the continuous process then resumes until the 
tension functional reaches the critical value again, and so OR, A mathematical model of such a process is provided 
by an impulse DDE with impulse times not prescribed in advance, as is usuahy the case (see, for example, 
[ 1, Section 4.6]), but determined by reaching the corresponding hypersurface in the ‘“Krasovskii space” associated 
with the given DDE. As far as we are aware, no impulse DDE% of this type other than ordinary impulse 
differential equations have been considered. 

Below, for an autonomous se&r impulse DDE with a simple tension fun&ona& we present a precise 
formulation of the problem and obtain general properties of the soiutions as well as sufficient eonditions for their 
asymptotic periodicity. It will also be interesting to consider a more general situation. 

Suppose the initial DDE is 

where 0 4 h < =, all 0, E [-Jr, 0], f: Rm x x[-h, O] + R, and I@, O] is the set of left-continuaus functions 
[-h, 0] -+ R having a finite number of discontinuities, all of which are of the first hind. We assume thatfsatisfies 
the following tipsehitz condition 

Note that the right-hand side of (1) cuwxs siturttions which are natural from the viewpoint of appheations. 
However, the form a?(t) = &J of the equation gives rise to a difkuhy concerned with the domain of the 

functional g. 
Let the tension functional J, its critical value J,, an the jump AJ, which occurs when this vahm is reached, be 

equal to, respectively 

Equation (1) together with conditions (2) define the impulse DDE. 
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Under the initial condition 

Xb -cpEK[-h,O] (3) 

the solution f of (l)-(3) can be constructed as follows. If in an arbitrary interval [to, tl) the solution x of problem 
(l), (3) (X is assumed to be continuous in [TV, 111 and i can have a finite number of discontinuities of the first kind) 

has no zeros, then x(t) = n(f) (to S t d tl). But ifx(t) # 0 (to Q t < tl), x(tl) = 0 (in particular, if cp(O) = 0, then 

tl = to), then, for c > fl, X is constructed as a solution of (1) with initial point tl and initial function defined for 

t c rl by the solution X already constructed, but with initial value x(t:) = u. For t > 11 this solution x can be 

extended up to the Crst instant t2 > tl when x(&) = 0 (if such an instant occurs), after which we set .?(f3 again, 
and so on. 

The existence and uniqueness of the solution of (l)-(3) in a sufficiently small time interval with left end to can 
be proved in the standard way. Setting, for brevity 

fo := IfiO ,.**, 0, 0% M := M, + *.. + ii&, + h& 

from the Lipschitz condition we obtain the following estimate in the domain of existence of 2 

1 f(qt +el j,..., n’(t + e,), j;l)k f. + MSUPI F, I 

From the latter we find, also in a standard way, that 

Ix(t)k 
{ 

max{suplql, a)e”(r-rg) + foM-‘[CM(‘-‘) -11 (M > 01 
max{supl@. al+fo(t-to) (M-0) 

It fojlows that in each finite interval (to, 8) of the existence of X the value of In’/ has an upper limit between the 
d&continuities of X, and so there may be only a finite number of such points in [&, r). This means that X can be 

extended as far as required, i.e. the following result has been proved. 

Theorem 1. Under the ahove assumptions, a unique solution of problem (l)-(3) exists in any interval [to, i) 
(to c t s -). 

Remark. Under the hypotheses of Theorem 1, the solution of (l)-(3) may, in general, fail to depend 
continuously on the initial function of cp- 

The picture becomes much simpler if we assume additionally that 

4 := suplflu ,*..., u,, l&$ ff1 ,...I 11,C[O,dl; OSin@, supysd)cO (4) 

for some d E [a, -). The following assertion is true. 
Theorem 2. Let the inequality (4) and the hypotheses of Theorem 1 be satisfied and let 0 C inf cp, suptp d d. 

Then, for the solution n of (l)-(3), we have 

Thii solution has an infinite sequence. tl(* to) < f2 < . . . of discontinuities, for which 

If sup cp 6 a, then the latter inequality holds for all k > 1. 
To study the asymptotic hehaviour of the solution x of (l)-(3) as t + m we introduce an analogue of the 

Poincar6 return map, namely, an operator,P which assignsx,, to any function 9, E K[-h, 0] with cp(O) = 0 = min 
9, sup a, G d. The following lemma gives an estimate of the Liischitz constant of this operator. 
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L.cmma 1. Let the hypothesis of Theorem 2 with d = a be satisfied for the initial functions cp’ and cp”, let 

cp’(0) = q2(0) = 0, and let 

uhf== 6, h c h,, (5) 

Then 

sup+ -&A 4 uMP(& + UM 4” 6)p (p := suplf$ -+I) (6) 

Z4uo$ We can set t$ = 6 = 0 without loss of generality. Then, as long as there are no d&continuities, we have 

for t > 0. Sincex’(O+) = a?(03 = a, it follows that 

But, by Theorem 2 and the first inequality in (5) 

‘lb fix onr ideas, support ti G 4. Then we find from (7) that 

However, from Theorem 2 and the first inequality in (5) it follows that ri ) h. Therefore we have 

rz -rl ---Izz_riI~~(r:)-~~(r~)~~*-~~~~pc: s MpaiS~~~ 
x (r2)-x (r2) 

Substituting this estimate into the previous one, we obtain (6). Lemma 1 is proved. 

If the return map is a contraction, the system described by an impulse DDE of the type under consideration 

has a unique limit cycle, which is stable. This is stated in the following theorem. 

7Vzeorem 3. Let condition (4) and the hypotheses of Theorem 1 be satisfied, and let h d h, and 

Then the impulse DDE (i), (2) has a unique periodic solution r w i(r) in the region 0 G x(r) < II apart from an 
arbitrary shift in r. Under the hypotheses of Theorem 2, the solution tends to j; asymptotically as r + 00 in the 

following sense: rk = kT + const + O(~T~), where T is the period of X, a > 0, and 

ask+m,wherei(F) =O. 

&oc$ Let x be a solution of problem (l)-(3) under the hypotheses of Theorem 2. Consider the sequence of 

functions 
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8 w xp(8) := x(8 + tk) (k = 1, 2,...; t&, - tk < 8 < 0) 

By Theorem 2 and the inequality h G h,, for all sufficiently large k, each of these functions can be regarded as the 

initial function for the next one. Setting for (p’(8) = Xk+i_i(B) (i = 1,2), we can apply Lemma 1, which implies that 

But inequality (8) implies that the coefficient on the right-hand side is less than one. This means that the sequence 

{xk} of uniformly continuous functions on (4, 0] converges uniformly to X, which is also uniformly continuous on 
(4, 01, the rate of convergence being exponential. 

Letting k -+ m in the formula +,I = AC,, we find that if X is taken to be the initial function, then the 

corresponding solution of (l)-(3) turns out to be periodic. It follows that X can be extended onto the whole t-axis 
to obtain a periodic solution of the impulse DDE (l), (2). The period of? is equal to lim&+.&+t - tk). Now, since 
the impulse DDE (l), (2) is autonomous, it follows that x(t) “approaches” i(f) asymptotically as t + -a The 

periodic solution is unique because Lemma 1 could be applied to two such solutions, which completes the proof 

of Theorem 3. 
The inequalities h d h, and (8), which ensure the existence of a stable limit cycle, are quite restrictive, and it 

would be desirable to relax them and, in particular, to investigate the case h = -. It would also be interesting to 
obtain the impulse DDE under consideration as the limit of a more realistic singularly perturbed system with high 
but finite rate of variation of the state as the critical situations are reached. 
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